Cannabis -vs- AIDS

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628147: The medical community has provided studies proving the efficacy of marijuana in treatment of patients who have not responded to other treatments. Specifically, these studies have shown the therapeutic value of marijuana in controlling pain, alleviating nausea and vomiting, as well as alleviating symptoms of multiple sclerosis (MS) and AIDS. In 2011, a randomized controlled trial of cannabinoids’ treatment of chronic non-cancer pain also demonstrated positive outcomes [56]. Significant analgesic effects were seen in treating neuropathic pain, fibromyalgia, and rheumatoid arthritis.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728280:  Many HIV infected patients smoke marijuana for a variety of reasons, including symptom relief and reducing symptom frequency; the users report improvement in appetite (97%), muscle pain (94%), nausea (93%), anxiety (93%), nerve pain (90%), depression (86%), and paraesthesia (85%). However, many cannabis users (47%) also reported associated memory deterioration. [92]. Smoked marijuana appears to have a beneficial role in reducing neuropathic pain in HIV, and the studies discussing this are detailed below. In a subanalysis of data from a multicountry randomized clinical trial studying self-care symptom management in HIV patients, anxiety was found to be lower in marijuana users than nonusers. Marijuana offered slightly better overall relief then the prescription/OTC medications for a number of symptoms (including anxiety, depression, nausea, vomiting, diarrhea, neuropathy). Marijuana users reported better overall medication effectiveness than non-users, however it is unclear whether it is attributable to the euphoric effect of marijuana or a real synergism with the medications [93]. Thus, cannabinoids may have multiple therapeutic functions in both, the central nervous system and peripheral organ disease.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828614:   Cannabis, commonly known as marijuana, is a product of the Cannabis sativa plant and the active compounds from this plant are collectively referred to as cannabinoids. For several centuries, marijuana has been used as an alternative medicine in many cultures and, recently, its beneficial effects have been shown in: the treatment of nausea and vomiting associated with cancer chemotherapy; anorexia and cachexia seen in HIV/AIDS patients; and in neuropathic pain and spasticity in multiple sclerosis [1–4]. Cannabinoid pharmacology has made important advances in recent years after the discovery of the cannabinoid receptors (CB1 and CB2). Cannabinoid receptors and their endogenous ligands have provided an excellent platform for the investigation of the therapeutic effects of cannabinoids. It is well known that CB1 and CB2 are heterotrimeric Gi/o-protein-coupled receptors and that they are both expressed in the periphery and the CNS. However, CB1 expression is predominant in the CNS, especially on presynaptic nerves, and CB2 is primarily expressed on immune cells [5,6].


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309010Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB1R and CB2R) and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB2R, but not CB1R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB2R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB2R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB2R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB2R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB2R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.


https://www.ncbi.nlm.nih.gov/pubmed/12617697:  ​The major psychoactive constituent of Cannabis sativa, delta(9)-tetrahydrocannabinol (delta(9)-THC), and endogenous cannabinoid ligands, such as anandamide, signal through G-protein-coupled cannabinoid receptors localised to regions of the brain associated with important neurological processes. Signalling is mostly inhibitory and suggests a role for cannabinoids as therapeutic agents in CNS disease where inhibition of neurotransmitter release would be beneficial. Anecdotal evidence suggests that patients with disorders such as multiple sclerosis smoke cannabis to relieve disease-related symptoms. Cannabinoids can alleviate tremor and spasticity in animal models of multiple sclerosis, and clinical trials of the use of these compounds for these symptoms are in progress. The cannabinoid nabilone is currently licensed for use as an antiemetic agent in chemotherapy-induced emesis. Evidence suggests that cannabinoids may prove useful in Parkinson's disease by inhibiting the excitotoxic neurotransmitter glutamate and counteracting oxidative damage to dopaminergic neurons. The inhibitory effect of cannabinoids on reactive oxygen species, glutamate and tumour necrosis factor suggests that they may be potent neuroprotective agents. Dexanabinol (HU-211), a synthetic cannabinoid, is currently being assessed in clinical trials for traumatic brain injury and stroke. Animal models of mechanical, thermal and noxious pain suggest that cannabinoids may be effective analgesics. Indeed, in clinical trials of postoperative and cancer pain and pain associated with spinal cord injury, cannabinoids have proven more effective than placebo but may be less effective than existing therapies. Dronabinol, a commercially available form of delta(9)-THC, has been used successfully for increasing appetite in patients with HIV wasting disease, and cannabinoid receptor antagonists may reduce obesity. Acute adverse effects following cannabis usage include sedation and anxiety. These effects are usually transient and may be less severe than those that occur with existing therapeutic agents. The use of nonpsychoactive cannabinoids such as cannabidiol and dexanabinol may allow the dissociation of unwanted psychoactive effects from potential therapeutic benefits. The existence of other cannabinoid receptors may provide novel therapeutic targets that are independent of CB(1) receptors (at which most currently available cannabinoids act) and the development of compounds that are not associated with CB(1) receptor-mediated adverse effects. Further understanding of the most appropriate route of delivery and the pharmacokinetics of agents that act via the endocannabinoid system may also reduce adverse effects and increase the efficacy of cannabinoid treatment. This review highlights recent advances in understanding of the endocannabinoid system and indicates CNS disorders that may benefit from the therapeutic effects of cannabinoid treatment. Where applicable, reference is made to ongoing clinical trials of cannabinoids to alleviate symptoms of these disorders.



​​​​​​cannabis data.org