​​​​​​cannabis data.org

Cannabis -vs- Blood Cancers

https://www.ncbi.nlm.nih.gov/m/pubmed/18546271Endogenous and synthetic cannabinoids exert antiproliferative and proapoptotic effects in various types of cancer and in mantle cell lymphoma (MCL). In this study, we evaluated the expression of cannabinoid receptors type 1 and type 2 (CB1 and CB2) in non-Hodgkin lymphomas of B cell type (n = 62). A majority of the lymphomas expressed higher mRNA levels of CB1 and/or CB2 as compared to reactive lymphoid tissue. With the exception of MCL, which uniformly overexpresses both CB1 and CB2, the levels of cannabinoid receptors within other lymphoma entities were highly variable, ranging from 0.1 to 224 times the expression in reactive lymph nodes. Low levels of the splice variant CB1a, previously shown to have a different affinity for cannabinoids than CB1, were detected in 44% of the lymphomas, while CB1b expression was not detected. In functional studies using MCL, Burkitt lymphoma (BL), chronic lymphatic leukemia (CLL) and plasma cell leukemia cell lines, the stable anandamide analog R(+)-methanandamide (R(+)-MA) induced cell death only in MCL and CLL cells, which overexpressed both cannabinoid receptors, but not in BL. In vivo treatment with R(+)-MA caused a significant reduction of tumor size and mitotic index in mice xenografted with human MCL. Together, our results suggest that therapies using cannabinoid receptor ligands will have efficiency in reducing tumor burden in malignant lymphoma overexpressing CB1 and CB2.

https://www.ncbi.nlm.nih.gov/pubmed/12091357:    In the current study, we examined whether ligation of CB2 receptors would lead to induction of apoptosis in tumors of immune origin and whether CB2 agonist could be used to treat such cancers. Exposure of murine tumors EL-4, LSA, and P815 to delta-9-tetrahydrocannabinol (THC) in vitro led to a significant reduction in cell viability and an increase in apoptosis. Exposure of EL-4 tumor cells to the synthetic cannabinoid HU-210 and the endogenous cannabinoid anandamide led to significant induction of apoptosis, whereas exposure to WIN55212 was not effective. Treatment of EL-4 tumor-bearing mice with THC in vivo led to a significant reduction in tumor load, increase in tumor-cell apoptosis, and increase in survival of tumor-bearing mice. Examination of a number of human leukemia and lymphoma cell lines, including Jurkat, Molt-4, and Sup-T1, revealed that they expressed CB2 receptors but not CB1. These human tumor cells were also susceptible to apoptosis induced by THC, HU-210, anandamide, and the CB2-selective agonist JWH-015. This effect was mediated at least in part through the CB2 receptors because pretreatment with the CB2 antagonist SR144528 partially reversed the THC-induced apoptosis. Culture of primary acute lymphoblastic leukemia cells with THC in vitro reduced cell viability and induced apoptosis. Together, the current data demonstrate that CB2 cannabinoid receptors expressed on malignancies of the immune system may serve as potential targets for the induction of apoptosis. Also, because CB2 agonists lack psychotropic effects, they may serve as novel anticancer agents to selectively target and kill tumors of immune origin. 

https://www.ncbi.nlm.nih.gov/pubmed/16908594:   Plant-derived cannabinoids, including Delta9-tetrahydrocannabinol (THC), induce apoptosis in leukemic cells, although the precise mechanism remains unclear. In the current study, we investigated the effect of THC on the upstream and downstream events that modulate the extracellular signal-regulated kinase (ERK) module of mitogen-activated protein kinase pathways primarily in human Jurkat leukemia T cells. The data showed that THC down-regulated Raf-1/mitogen-activated protein kinase/ERK kinase (MEK)/ERK/RSK pathway leading to translocation of Bad to mitochondria. THC also decreased the phosphorylation of Akt. However, no significant association of Bad translocation with phosphatidylinositol 3-kinase/Akt and protein kinase A signaling pathways was noted when treated cells were examined in relation to phosphorylation status of Bad by Western blot and localization of Bad to mitochondria by confocal analysis. Furthermore, THC treatment decreased the Bad phosphorylation at Ser(112) but failed to alter the level of phospho-Bad on site Ser(136) that has been reported to be associated with phosphatidylinositol 3-kinase/Akt signal pathway. Jurkat cells expressing a constitutively active MEK construct were found to be resistant to THC-mediated apoptosis and failed to exhibit decreased phospho-Bad on Ser(112) as well as Bad translocation to mitochondria. Finally, use of Bad small interfering RNA reduced the expression of Bad in Jurkat cells leading to increased resistance to THC-mediated apoptosis. Together, these data suggested that Raf-1/MEK/ERK/RSK-mediated Bad translocation played a critical role in THC-induced apoptosis in Jurkat cells.