​​​​​​cannabis data.org

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631143:  Anandamide (AEA) is the prominent member of the endocannabinoid family and its biological action is mediated through the binding to both type-1 (CB1) and type-2 (CB2) cannabinoid receptors (CBR). The presence of AEA and CBR in the gastrointestinal tract highlighted their pathophysiological role in several gut diseases, including celiac disease. Here, we aimed to investigate the expression of CBR at transcriptional and translational levels in the duodenal mucosa of untreated celiac patients, celiac patients on a gluten-free diet for at least 12 months and control subjects. Also biopsies from treated celiac patients cultured ex vivo with peptic-tryptic digest of gliadin were investigated. Our data show higher levels of both CB1 and CB2 receptors during active disease and normal CBR levels in treated celiac patients. In conclusion, we demonstrate an up-regulation of CB1 and CB2 mRNA and protein expression, that points to the therapeutic potential of targeting CBR in patients with celiac disease.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232190:  Our results indicate that CBD is a key modulator molecule that may interfere with the enteroglial-mediated interactions in an intestinal inflammatory environment. Its activity, markedly focused on S100B protein downregulation, leads to consequent reduction of intestinal damage occurring during acute and chronic intestinal inflammatory status and highlights the importance of glial cells control during these pathological conditions.

The results of the present study correlate and expand the findings suggesting CBD as a potent compound that is able to modulate experimental gut inflammation [29], [30]. The exact cellular signalling pathways responsible for the effect of CBD still remain unclear, even though, for the first time, we identified PPAR-γ as a key receptor in its action during gut inflammation.

However, in this study we demonstrate that during intestinal inflammation, CBD is able to control the inflammatory scenario and the subsequent intestinal apoptosis through the restoration of the altered glia-immune homeostasis. CBD is therefore regarded as a promising therapeutic agent that modulates the neuro-immune axis, which can be recognised as a new target in the treatment of inflammatory bowel disorders.

https://www.ncbi.nlm.nih.gov/pubmed/17396241:  The endocannabinoid system is upregulated in both human inflammatory bowel diseases and experimental models of colitis. In this study, we investigated whether this upregulation is a marker also of celiac disease-induced atrophy. The levels of the cannabinoid CB(1) receptor, of the endocannabinoids, anandamide, and 2-arachidonoyl-glycerol (2-AG), and of the anti-inflammatory mediator palmitoylethanolamide (PEA) were analyzed in bioptic samples from the duodenal mucosa of celiac patients at first diagnosis assessed by the determination of antiendomysial antibodies and histological examination. Samples were analyzed during the active phase of atrophy and after remission and compared to control samples from non-celiac patients. The levels of anandamide and PEA were significantly elevated (approx. 2- and 1.8-fold, respectively) in active celiac patients and so were those of CB(1) receptors. Anandamide levels returned to normal after remission with a gluten-free diet. We also analyzed endocannabinoid and PEA levels in the jejunum of rats 2, 3, and 7 days after treatment with methotrexate, which causes inflammatory features (assessed by histopathological analyses and myeloperoxidase activity) similar to those of celiac patients. In both muscle/serosa and mucosa layers, the levels of anandamide, 2-AG, and PEA peaked 3 days after treatment and returned to basal levels at remission, 7 days after treatment. Thus, intestinal endocannabinoid levels peak with atrophy and regress with remission in both celiac patients and methotrexate-treated rats. The latter might be used as a model to study the role of the endocannabinoid system in celiac disease.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423254:  Δ9-Tetrahydrocannabinol (THC) and cannabidiol accelerated the recovery from cytokine-induced increased permeability; an effect sensitive to CB1 receptor antagonism. Anandamide and 2-arachidonylglycerol further increased permeability in the presence of cytokines; this effect was also sensitive to CB1 antagonism. No role for the CB2 receptor was identified in these studies. Co-application of THC, cannabidiol or a CB1 antagonist with the cytokines ameliorated their effect on permeability. Inhibiting the breakdown of endocannabinoids worsened, whereas inhibiting the synthesis of endocannabinoids attenuated, the increased permeability associated with inflammation.

These findings suggest that locally produced endocannabinoids, acting via CB1 receptors play a role in mediating changes in permeability with inflammation, and that phytocannabinoids have therapeutic potential for reversing the disordered intestinal permeability associated with inflammation.

Cannabis -vs- Celiac Disease​