https://www.ncbi.nlm.nih.gov/pubmed/29784129:  We evaluated the effects of the non-psychoactive cannabinoid cannabidiol (CBD) on the inflammatory response and recovery of function following spinal cord injury (SCI). Female C57Bl/6 mice were exposed to spinal cord contusion injury (T9-10) and received vehicle or CBD (1.5 mg/kg IP) injections for 10 weeks following injury. The effect of SCI and CBD treatment on inflammation was assessed via microarray, qRT-PCR and flow cytometry. Locomotor and bladder function and changes in thermal and mechanical hind paw sensitivity were also evaluated. There was a significant decrease in pro-inflammatory cytokines and chemokines associated with T-cell differentiation and invasion in the SCI-CBD group as well as a decrease in T cell invasion into the injured cord. A higher percentage of SCI mice in the vehicle-treated group (SCI-VEH) went on to develop moderate to severe (0-65.9% baseline thermal threshold) thermal sensitivity as compared with CBD-treated (SCI-CBD) mice. CBD did not affect recovery of locomotor or bladder function following SCI. Taken together, CBD treatment attenuated the development of thermal sensitivity following spinal cord injury and this effect may be related to protection against pathological T-cell invasion.


https://www.ncbi.nlm.nih.gov/pubmed/18930143:  Endocannabinoids are lipid mediators with protective effects in many diseases of the nervous system. We have studied the modulation of the endocannabinoid system after a spinal cord contusion in rats. In early stages, lesion induced increases of anandamide and palmitoylethanolamide (PEA) levels, an upregulation of the synthesizing enzyme NAPE-phospholipase D and a downregulation of the degradative enzyme FAAH. In delayed stages, lesion induced increases in 2-arachidonoylglycerol and a strong upregulation of the synthesizing enzyme DAGL-alpha, that is expressed by neurons, astrocytes and immune infiltrates. The degradative enzyme MAGL was also moderately increased but only 7 days after the lesion. We have studied the cellular targets for the newly formed endocannabinoids using RT-PCR and immunohistochemistry against CB(1) and CB(2) receptors. We observed that CB(1) was constitutively expressed by neurons and oligodendrocytes and induced in reactive astrocytes. CB(2) receptor was strongly upregulated after lesion, and mostly expressed by immune infiltrates and astrocytes. The endocannabinoid system may represent an interesting target for new therapeutical approaches to spinal cord injury.





Cannabis -vs- Spinal Injury

​​​​​​cannabis data.org